<u>Chapter 2:</u> Matrix Algebra

Sec. 2.5: Elementary Matrices

What's the point?

- Row operations are important to solving systems of linear equations
- We just learned how to multiply matrices
- We can perform row operations on a matrix by instead multiplying it on the left by an elementary matrix

<u>Def</u>: An <u>elementary matrix</u> is a matrix obtained by performing EXACTLY ONE elementary row operation on the identity matrix.

<u>Type I</u> Interchange 2 rows <u>Type II</u> Multiply a row by a nonzero number Type III

Multiply a row by a number, then add to another row

Lemma 2.5.1: ¹⁰

If an elementary row operation is performed on an $m \times n$ matrix A, the result is EA where E is the elementary matrix obtained by performing the same operation on the $m \times m$ identity matrix.

Proof:

Lemma 2.5.2

Every elementary matrix *E* is invertible, and E^{-1} is also a elementary matrix (of the same type). Moreover, E^{-1} corresponds to the inverse of the row operation that produces *E*.

Туре	Operation	Inverse Operation
Ι	Interchange rows p and q	Interchange rows p and q
II	Multiply row p by $k \neq 0$	Multiply row <i>p</i> by $1/k$, $k \neq 0$
III	Add <i>k</i> times row <i>p</i> to row $q \neq p$	Subtract <i>k</i> times row <i>p</i> from row $q, q \neq p$

<u>Ex 1</u>:

Find the inverse of each of the elementary matrices

$$E_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 9 \end{bmatrix}, \quad \text{and} \quad E_3 = \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

If matrix A can be carried to matrix B $(A \rightarrow B)$ by a sequence of elementary row operations, then $B = E_k E_{k-1} \cdots E_2 E_1 A$ where each E_i is an elementary matrix.

Theorem 2.5.1

Suppose A is $m \times n$ and $A \rightarrow B$ by elementary row operations.

- 1. B = UA where U is an $m \times m$ invertible matrix.
- 2. *U* can be computed by $\begin{bmatrix} A & I_m \end{bmatrix} \rightarrow \begin{bmatrix} B & U \end{bmatrix}$ using the operations carrying $A \rightarrow B$.
- 3. $U = E_k E_{k-1} \cdots E_2 E_1$ where E_1, E_2, \ldots, E_k are the elementary matrices corresponding (in order) to the elementary row operations carrying *A* to *B*.

<u>Ex 2</u>: If $A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 1 \end{bmatrix}$, express the reduced row-echelon form *R* of *A* as R = UA where *U* is invertible.

Theorem 2.5.2

A square matrix is invertible if and only if it is a product of elementary matrices.

Proof:

Express $A = \begin{bmatrix} -2 & 3 \\ 1 & 0 \end{bmatrix}$ as a product of elementary matrices.